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ABSTRACT:

The success of modern neural network approaches to control
suggests that they might provide the best hope for significant
advances in robotic control and dynamic simulation. This work
investigates the use of a new fuzzy self-organizing feature map
network architecture to solve the inverse kinematic problem for
a human or robotic arm having seven degrees of freedom in three
dimensions. The reference frame system ARM (Articulated
Revolute Motion) created for the articulated figure (Soltys,
1991) follows traditional control conventions and thus is suit-
able for robotic environments. We report the results of some
three—dimensional experiments for a seven degrees of freedom
articulated arm comparing the fuzzy self-organizing feature ap-
proach to the backpropagation network.

INTRODUCTION

There has recently been a number of studies into the possibility of using neural
networks for solving the inverse kinematics problem in robotics. Josin, Charney
and White, and independently Elsley, discuss using backpropagation to solve the
inverse kinematic problem for a two—dimensional articulated figure having two
degrees of freedom (Josin, Charney and White, 1988, and Elsley, 1988). Bruwer
and Cruse (Bruwer and Cruse, 1990) use neural network architectures to solve
the inverse kinematics problem for a three degrees of freedom two dimensional
arm.
Caudill (Caudill, 1988) applies a Kohonen self-organizing net to an artic-
ulated figure problem similar to that in (Josin, Charney and White, 1988).
Ritter, Martinetz and Schulten (Ritter, Martinetz, and Schulten, 1989) extend
the Kohonen self-organizing network to establish a topology conserving map for
learning kinematic and dynamic properties of a simulated robot arm.

The work presented in this paper describes the use of a new fuzzy self-
organizing feature map network architecture (Huntsberger and Ajjimarangsee,
1990) for solving the inverse kinematics problem in articulated figure control.
This study uses the ARM configuration which is suitable for a three-dimensional
representation and practical kinematic implementation of a human or robotic



arm having seven degrees of freedom (Soltys, 1991). In this model, specifica-
tions are given for medically observed joint angle limits with their corresponding
representation in the Denavit and Hartenberg (D&H) notation (Denavit and
Hartenberg, 1955), which is commonly used in modern robotic control.

The next section briefly describes the ARM system that was used to model
human articulated figure motion for the purposes of training the neural networks.
This is followed by a description of the fuzzy self-organizing feature map network.
Finally, we present the results of some experimental studies comparing the fuzzy
self-organizing and backpropagation networks applied to the inverse kinematics
problem for a seven degrees of freedom arm.

THE ARM SYSTEM

The general description of a line in a reference frame using only four parameters
d, a, 8, and a can be used in the D&H system to describe the unique positioning
of a n degree of freedom robotic arm. We are assuming revolute joints, so the
parameters d, a and « are fixed and the #’s for each joint will be referred to
as the joint angles. A leading text on physical examinations used by medical
students contains the ranges of motion in the joints of interest (Bates, 1987).
While the angle specifications are exactly what we need to properly limit and
model motion, they are not described in a manner which is particularly useful
for either graphic simulation or robotic control. This led us to develop the ARM
system, which maps the joint angles and limits into a representation suitable for
robotic control. Figure 1 gives the joint angle limits, as well as their mapping
into the ARM system.

The relative position and orientation in the D&H representation for each of
the eight reference frames of the ARM system compared to that of a robotic
arm are shown in Figure 2. The link parameters and the minimum, initial
and maximum joint angles () associated with each link are also shown. The
orientations shown in Figure 2 are for the initial configuration of the arm at
rest. In the ARM system there are three sets of frames having coincident origins
[0,1,2], [3.,4], [5,6], whereas in the robotic system reference frames 5 and 6 aren’t
necessarily coincident.

NEURAL NETWORKS

The number of successful applications of neural network architectures in recent
literature shows that they are well suited to certain applications. Backpropaga-
tion is perhaps the most commonly used supervised learning algorithm (Rumel-
hart and McClelland, 1986). Kohonen’s two layer self-organizing feature map is
more of a classification network than a non-linear mapping network (Kohonen,
1984). The fuzzy self-organizing feature map (FSOFM) algorithm is described
in (Huntsberger and Ajjimarangsee, 1990).
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Figure 1: Angles and joint limitations in the ARM system.

EXPERIMENTAL STUDIES

In order to test the generalization capabilities of the networks, several motion
paths were created. The networks were trained on 11 points evenly spaced
along paths created using a forward kinematics program. The backpropagation
network was trained with twelve hidden layer nodes. Two sets of data points
representative of two separate motions were generated. The first motion, “bowl-
ing”, is a motion representative of an arm swinging as it might do when rolling
a bowling ball. The second motion, “push”, is representative of a motion which
might be used to push a lever in a fairly horizontal direction. Training was done
on the basis of a single point (end—effector) position, or three points (elbow,
wrist and end-effector) positions.
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Figure 2: Reference frames in ARM and robot systems.

Table 1 gives statistics for the generalization ability of the networks in terms
of their error in the end—effector position and in the joint angle calculation. Max
Dist is the maximum Fuclidean distance error between the actual and desired
end—effector positions and Max Diff is the maximum angle difference for any one
angle for any of the generated points in the test motion path. The test cases are
labeled by network type (b for backpropagation, f for FSOFM), motion path (b
for bowling, p for push), and number of known arm points.

The “bowling” and “push” data sets, like most task motions, are comprised
of configurations whose change in elbow position is proportional and related
to the change in the end—effector position in a relatively non—redundant way.
There is a substantial improvement in the overall learning accuracy for the
backpropagation network in the use of three training points versus one training
point. In none of the cases was there significant improvement for the FSOFM
network by including additional known points. This is because the error does
not arise from an inability to categorize the states, but from a failure to properly
interpolate between known states. A membership value is given to an entire set
of angles in a given state, thus in the current implementation there is no means
to attribute different membership values for each of the angles in the arm.



TABLE 1: ERROR STATISTICS

Test Max Rms Avg Max Sq Avg

Case | Dist Error Dist Diff Error Diff

bbl 30.5456  85.2695 5.2370 | -0.7201 8.0650 -0.0891
bb3 1.6992  0.1705 0.2601 | 0.0227 0.0084 0.0005
bpl 1.1382  0.0721  0.2050 | -0.0269 0.0037 -0.0001
bp3 1.1598  0.1159  0.2577 | -0.0256 0.0041  0.0000
fbl 6.3467  4.1557  1.3777 | -0.0648 0.1169 -0.0284
b3 5.4618  3.0570 1.2107 | -0.0558 0.0893 -0.0212
fpl 1.0095  0.1584 0.3012 | -0.0411 0.0399 0.0014
fp3 0.9972  0.1333 0.2793 | -0.0362 0.0330 0.0010

Even with the additional training points, the back propagation network still took
at least two orders of magnitude more iterations to converge than the FSOFM.
Furthermore, the time for each iteration in the backpropagation network can
be longer than that for the FSOFM net, depending on the number of hidden
layer nodes. The FSOFM architecture is more suitable for real time learning,
especially if the problem is decomposed into several portions having several small
networks.

CONCLUSIONS

The majority of previous works which discuss neural network approaches to
the inverse kinematics of articulated figures limit their studies to two degrees
of freedom in a two dimensional plane. Our research has extended studies of
neural network applications to three dimensions and seven degrees of freedom,
demonstrating a successful initial application of fuzzy self-organizing feature
map architecture to the non-linear inverse kinematic problem. The ARM sys-
tem is the first system to provide a D&H representation for a human arm. Since
the reference frame choices obey the convention of modern robotic control, it
may be used with either neural network architectures or with traditional ma-
trix methods. Finally, the ARM system accurately models medically observed
human joint limitations.

This capability makes the model useful for studies of human factors modeling
within environments (Woolford, Pandya, and Maida, 1990). The angle limits
and rest angles are documented for all seven degrees of freedom. Joint angle lim-
its were seen to be enforced as a result of training on valid ARM configurations.
We are presently investigating an extension of the ARM system using a hierar-
chy of neural networks responsible for learning different aspects of the inverse
kinematics. It should be possible, upon further study, to realize the primary
function of each of the degrees of freedom and construct a new network seeking
to model these functions. Other issues of interest include learning position as



a function of incremental change verses absolute location, and establishing a
means for a neural network to handle multiple correct solutions.
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